MODELLING AND APPLICATION OF ADVANCED THERMAL STORAGE

MATERIALS

A Thesis Presented

by

Anthony Joseph Rawson

BEng (Mechanical) (Honours 1) BSci (Physics) (Distinction) (Newcastle)

to

The Graduate Office of the University of Newcastle

In Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy

Specialising in Mechanical Engineering

Submitted January, 2016

Supervisors – Prof. Erich Kisi and Dr Heber Sugo

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to provisions of the Copyright Act 1968.

Anthony J. Rawson,

ABSTRACT

Instantaneous availability of power is taken for granted in much of the developed world. Provided a fuel source is unlimited and readily available, the expectation of instant power is readily fulfilled with available technology. However, it is now accepted that human kind's most utilised fuels (coal, oil and natural gas) are in fact diminishing and their availability cannot be guaranteed as demand outstrips supply. Not only supply limitations exist, the burning of these fuels contributes heavily to dangerous climate change. Thus technology needs to be developed to efficiently utilise fuels intermittently or take advantage of other energy sources which may also be intermittent.

Thermal energy storage devices store heat energy through sensible heating, a phase change or a combination of the two. A device can be coupled to a power cycle to provide thermal inertia to the system. Power cycles that generate electricity from an intermittent heat source are an obvious application. Applications also exist in industrial processes requiring continuous heat for drying or a chemical reaction and control of air temperature in sensitive environments.

Many thermal energy storage devices exist, tailored to particular temperature ranges and storage capacities. This thesis introduces the Miscibility Gap Alloy as a potential thermal storage technology. Miscibility Gap Alloys overcome a number of the shortcomings of molten salt, paraffin and sensible storage media but their properties are not yet well communicated.

Material properties, lifetime estimates, economic characteristics and implementations of Miscibility Gap Alloys are discussed in this dissertation. Through

i

analysis of these aspects a number of novel methodologies, theories and devices were developed.

The Lattice Monte Carlo method was successfully employed to model effective conductivity of binary composites. The results of these analyses and existing homogenisation models were generalised for volume fraction and constituent conductivity ratio through a novel concept titled 'microstructural efficiency'. This work enabled the effective thermal conductivity (and indeed any 2nd rank tensor property obeying Fick's Law) to be estimated with great accuracy for a number of idealised and common morphologies with generality in volume fraction and conductivity ratio of constituents.

Best practice manufacturing methods for different Miscibility Gap Alloys were identified through experiment and presented. This led to knowledge of the morphology of the materials (including potential porosity). From this, good estimates were made of all material properties relevant to the alloys use as thermal storage. The hypothesised material property advantages of Miscibility Gap Alloys are thus confirmed and compared with the existing state of the art.

A discussion of the long term behaviour of Miscibility Gap Alloys follows. Consideration is given to diffusion as well as mechanical and chemical dominated aging mechanisms. It was found that diffusion dominated aging is most likely for systems with non-negligible solubility of the components and where discrete large powders undergo large temperature changes through cycling. Mechanical effects should not contribute beyond the first few cycles as the matrix deforms to accommodate any mismatch in thermal expansion. Chemical aging is likely for systems exposed to air or water but may be mitigated through isolation of the material. Establishment of material and long term properties of the alloys enables a discussion of the comparative economics of using Miscibility Gap Alloys as thermal storage. The alloys are shown to be extremely competitive compared to existing thermal energy storage solutions. They have a higher capital cost generally, due to the high cost of metals. However, the infrastructure and maintenance costs required are a fraction of that for most other thermal storage media.

Finally a number of potential implementations are introduced ranging from thermal inertia for power production to heating for the drying of foods. Detailed calculations and engineering drawings are provided for an air heater device intended for room heating. Specific methods of storage for concentrated solar thermal plants are described before more exotic implementations are presented.

The thesis concludes with a summary of work and a critical evaluation of the potential of Miscibility Gap Alloys as thermal storage media. Potential work for future research is provided with guidance as to how it might be initiated.

CITATIONS

Material from this thesis has been published in the following form:

A.J. Rawson, H. Sugo, E. Kisi, T. Fiedler, Effective Conductivity of Cu-Fe and Sn-Al Miscibility Gap Alloys, International Journal of Heat and Mass Transfer, 77 (2014) 395-405.

A.J. Rawson, H. Sugo, E. Kisi, Characterising Thermal Properties of Miscibility Gap Alloys for Thermal Storage Applications, in: Solar2014: The 52nd Annual Conference of the Australian Solar Council, Melbourne, Australia, 2014.

A.J. Rawson, E. Kisi, C. Wensrich, Microstructural Efficiency: Structured Morphologies, International Journal of Heat and Mass Transfer, 81 (2014) 820-828.

H. Sugo, D. Cuskelly, A. Rawson, E. Kisi, High Conductivity Phase Change Materials for Thermal Energy Storage - Miscibility Gap Alloys, in: Solar2014: The 52nd Annual Conference of the Australian Solar Council, Melbourne, Australia, 2014

T. Fiedler, I. Belova, A. Rawson, G. Murch, Optimized Lattice Monte Carlo for Thermal Analysis of Composites, Computational Materials Science, 95 (2014) 207-212.

ACKNOWLEDGEMENTS

The author of this dissertation would like to acknowledge the following professional organisations:

The University of Newcastle, for supervision use of facilities and general support through the duration of the candidates PhD.

The Australian Renewable Energy Agency (ARENA), formerly the Australian Solar Institute (ASI), for a motivating scholarship.

The author would like to specially acknowledge the hard work and direction provided from his supervisors:

Professor Erich Kisi

Dr. Heber Sugo

The author of this dissertation would like to acknowledge the following friends, colleagues and family:

Dr. Thomas Feidler	Dr. Chris Wensrich
Professor Graeme Murch	Professor Irina Belova
Professor Chris Howard	Professor Michael Carpenter
Jemima Emily Jackson	Lynette and Alan Rawson
Shaun Joseph Carter	
The Condors:	
The Condors: David Bradney	Mohammed 'Moei' Hasan
The Condors: David Bradney Samuel 'Swann' Evans	Mohammed 'Moei' Hasan Syed Imran 'Dhost' Shafiq
The Condors: David Bradney Samuel 'Swann' Evans Dylan 'Dyran' Cuskelly	Mohammed 'Moei' Hasan Syed Imran 'Dhost' Shafiq Joss 'Special K' Kesby

TABLE OF CONTENTS

ABSTRACTi
CITATIONSiv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLESxiii
LIST OF FIGURESxvi
NOMENCLATURExxiii
CHAPTER 1: INTRODUCTION AND SYNOPSIS 1
CHAPTER 2: LITERATURE OVERVIEW
2.1. Global Energy Resources
2.2. Renewable Energy Resources
2.3. Thermal Storage in the Literature12
2.4. Miscibility Gap Alloys17
2.4.1. Definition
2.4.2. Development
2.5. Comparison of Thermal Storage Properties

2.6. C	ost of Thermal Storage Systems
2.7. Н	omogenisation of Thermal Properties
2.8. T	he Lattice Monte Carlo Method 31
2.9. L	ifetime Properties of Alloys
CHAPTE	R 3: THEORETICAL AND COMPUTATIONAL METHODS 35
3.1. P	hysics of Thermal Storage
3.1.1.	Equilibrium
3.1.2.	Thermal Properties
3.1.3.	Chemical Properties
3.1.4.	Homogenisation of Equilibrium Properties
3.1.5.	Homogenisation of Non-Equilibrium Properties
3.1.6.	Other Material Properties
3.2. T	he Lattice Monte Carlo Method for Thermal Diffusion
3.2.1.	Theory of the Lattice Monte Carlo Method for Thermal Diffusion 62
3.2.2.	Lattice Monte Carlo Method for Transient Thermal Diffusion
3.2.3.	Lattice Monte Carlo Method for Steady State Thermal Diffusion
Algorithm	65
3.2.4.	Uncertainty in the Lattice Monte Carlo Method for Thermal Diffusion
	67
3.2.5.	Use of the Lattice Monte Carlo Method to Homogenise Miscibility
Gap Alloy Ma	terial Properties
3.3. L	ongevity Analysis of Thermal Storage
3.3.1.	Diffusion Dominated Aging
3.3.2.	Thermo-Mechanical Aging
3.3.3.	Chemical Reaction Aging
3.4. N	Iodelling the Economics of Miscibility Gap Alloys

vii

3.4.1.	Capital Costs	93
3.4.2.	Running Costs	94
3.4.3.	Cost Modelling	94
3.4.4.	Economic Comparison	97
CHAPTE	R 4: THE CONCEPT OF MICROSTRUCTURAL EFFICIEN	NCY 99 99
7.1. 1		
4.2. M	licrostructural Efficiency of Analytically Tractable or	Estimable
Morphologies		100
4.2.1.	Parallel Plates	100
4.2.2.	Sparse, Macroscopically Isotropic Morphologies	102
4.2.3.	Sparse, Prismatic Morphologies	104
4.2.4.	Summary of Microstructural Efficiency of Analytical and	Empirical
Models	106	
4.3. M	licrostructural Efficiency of Prismatic Morphologies	
4.3.1.	Structured Packing of Square Prisms	
4.3.2.	Structured Packing of Cylinders	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
4.4. M	licrostructural Efficiency of Three Dimensional Morphologies.	117
4.4.1.	Structured Packing of Cubes	117
4.4.2.	Structured Packing of Spheres	119
4.4.3.	Random Packing of Spheres	122
4.5. D	iscussion	127
CHAPTE	R 5: MANUFACTURING AND MATERIAL PROPER	TIES OF
MISCIBILITY G	AP ALLOYS	131
5.1. M	Ianufacturing Methods	131
5.1.1.	Manufacture of Brass-Graphite Miscibility Gap Alloys	131
5.1.2.	Manufacture of Copper-Graphite Miscibility Gap Alloys	133
viii		

5.1.3.	Manufacture of Copper-Iron Miscibility Gap Alloys 133
5.1.4.	Manufacture of Magnesium-Iron Miscibility Gap Alloys 135
5.1.5.	Manufacture of Silicon-Silicon Carbide Miscibility Gap Alloys 136
5.1.6.	Manufacture of Tin-Aluminium Miscibility Gap Alloys 138
5.1.7.	Manufacture of Zinc-Graphite Miscibility Gap Alloys 140
5.1.8.	Comparative Analysis of Manufacturing Methods 141
5.2. D	iscussion 143
5.2.1.	Proportion of Theoretical Density
5.2.2.	Effective Conductivity
5.2.3.	Energy Density

CHAPTER 6: LIFETIME ANALYSIS OF MISCIBILITY GAP ALLOYS 155

6.1. Pe	ercolation Based Aging	. 155
6.1.1.	Diffusion Modelling of the Sn-Al System	. 158
6.1.2.	Diffusion Modelling of the Cu-Fe System	. 169
6.1.3.	Thermo-Mechanical Considerations of Morphology Inversion	. 183
6.2. C	hemical Reaction Based Aging	. 185
6.2.1.	Oxidation of Matrix Materials	. 185
6.2.2.	Galvanic Corrosion of Miscibility Gap Alloys	. 186
6.3. D	iscussion	. 188
6.3.1.	Summary of Aging Mechanisms and Prevention Methods	. 188
6.3.2.	Diffusion Modelling Limitations	. 191

CHAPTER 7: ECONOMICS OF MISCIBILITY GAP ALLOY THERMAL STORAGE SYSTEMS 193

7.1. C	Capital Cost	193
7.1.1.	Material Costs	193
7.1.2.	Manufacturing Costs	195

7.1.3. Infrastructure Costs
7.1.4. Salvage Potential
7.1.5. Net Capital Cost
7.2. On-going Cost204
7.3. Discussion
CHAPTER 8: MISCIBILITY GAP ALLOY THERMAL STORAGI IMPLEMENTATIONS 207
8.1. Air Heating20
8.2. Concentrated Trough Solar Thermal Power Plant
8.3. Concentrated Solar Tower Thermal Power Plant
8.4. Conventional Thermal Power Plant
8.5. Discussion
8.6. Other Implementations
CONCLUSION
RECOMMENDATIONS FOR FUTURE WORK
REFERENCES
APPENDIX A: LISTING OF NOMINAL THERMAL PROPERTIES ANI COST OF THERMAL STORAGE MATERIALS
APPENDIX B: DERIVATION OF HOMOGENISATION EQUATIONS FOR
EQUILIBRIUM PROPERTIES

APPENDIX C: SELECTED LISTING OF IDENTIFIED MISCIBILITY GAP
ALLOYS
APPENDIX D: DERIVATION OF GROWTH-DECAY MODEL 249
APPENDIX E: TABULAR DATA OF MGA PROPERTIES
APPENDIX F: RELEVANT MATERIAL PRICING
APPENDIX G: MANUFACTURING COST ESTIMATION
APPENDIX H: INFRASTRUCTURE COST ESTIMATION
APPENDIX I: AIR HEATER ENGINEERING DRAWINGS
APPENDIX J: AIR HEATER DISCHARGE CHARACTERISTIC CALCULATIONS

LIST OF TABLES

Table 1 Properties and related benefits of Miscibility Gap Alloys as a thermal
storage medium
Table 2 Threshold radius for beta phase growth before matrix percolation occurs.
The volume fraction threshold is also provided for each packing type. Here $\boldsymbol{\phi}$ refers to the
volume fraction of the distributed phase
Table 3 Material properties appropriate for analysing a concentric sphere model
with expansion coefficient mismatch and volume change on phase change
Table 4 Similar transient properties involved in engineering situations 126
Table 5 Summary of manufacturing methods used in Miscibility Gap Alloy
production in this thesis
Table 6 Experimentally found percentage of theoretical density for Miscibility Gap
Alloys discussed in this thesis
Table 7 Solubility of the liquid and high temperature alpha phase for each system 10
and 50 $^{\circ}$ C above the melting temperature
Table 8 Range of parameters for Growth-Decay modelling of Sn-Al MGAs, 159
Table 9 Arrhenius parameters for Tracer Diffusion in Sn-Al systems 159
Table 10 Parameters to suit equation 103 describing the cycles to failure for
different volume fractions
Table 11 Range of parameters for Growth-Decay modelling of Cu-Fe MGAs, 170
Table 12 Arrhenius parameters for Tracer Diffusion in Cu-Fe systems 170
Table 13 Parameters for curve fits to Cu-Fe lifetime predictions

Table 14 Peak Von-Mises Stress ranges for the concentric sphere model of
Miscibility Gap Alloys heated from room temperature to their peak operation temperature.
Table 15 Different aging mechanism significance for analysed Miscibility Gap
Alloys
Table 16 Bounds for manufacturing costs taken from the CES database [102]194
Table 17 Recommended infrastructure elements and price bounds for each
Miscibility Gap Alloy of interest
Table 18 Salvage proportion assumed for each Miscibility Gap Alloy system196
Table 19 Rated capacity per barrel for different materials ($\Delta T = 100$ °C + latent
heat)
Table 20 Listing of selected identified Miscibility Gap Alloys, adapted from [26].
Table 21 Material cost bounds used in economic analysis. 278
Table 22 Bounds for manufacturing costs taken from the CES database [102]279
Table 23 Recommended infrastructure elements and price bounds for each
Miscibility Gap Alloy of interest
Table 24 Flow cross sectional area and heat transfer surface for different
configurations of the air heater

LIST OF FIGURES

Figure 1. The typical load and supply for a winter's day in South West USA. Photo
Voltaic (PV),
Figure 2 Doha's modern history involves rapid development over the last 30 years
following significant development and continued exploitation of oil and gas reserves [3]6
Figure 3 Satellite image of the border of Bolivia and Brazil. [4]6
Figure 4 Historical World (including international aviation and international marine
bunkers) total primary energy supply
Figure 5 Comical comparison of mass specific energy densities of common fuels
[8]9
Figure 6 Comparison of volumetric energy densities of common fuels and energy
storage media
Figure 7 Schematic describing energy storage as sensible heat and in a phase change
in a Miscibility Gap Alloy
Figure 8 Mg-Fe Miscibility Gap Alloy morphology demonstrated through a Back
Scattered Electron Microscope image [29]18
Figure 9 Graphical representation of energy density and thermal conductivity for a
number of thermal storage materials
Figure 10 Nominal material cost plotted against energy density for a range of
thermal storage materials
Figure 11 Gibbs free energy for pure iron phases from 300 to 2800 K44
Figure 12 An example of several Gibbs Free Energy and Chemical Potential curves
at different temperatures and their relationship to the topology of a phase diagram47

Figure 13 Microstructural Efficiency of a number of theoretical models 107
Figure 14 Schematics of morphologies appropriate for each of the microstructural
efficiency models presented in the previous figure
Figure 15 A simple schematic of a binary miscibility gap alloy where 1 is the matrix
phase and 2 is the lower melting temperature phase
Figure 16 Phase diagram of tin and aluminium [93] 20
Figure 17 Flow diagram of a Lattice Monte Carlo method for transient thermal
diffusion with isothermal thermal properties
Figure 18 Flow diagram of a Lattice Monte Carlo method for steady state thermal
diffusion with isothermal thermal properties
Figure 19 Flow Chart of Thermal Cycling model73
Figure 20 Corrosion potentials in flowing sea water at ambient temperature 92
Figure 21 Cost of thermal energy storage plotted against energy density for the Cu-
Fe system over a range of volume fractions
Figure 22 Microstructural efficiency for a system of parallel plates 101
Figure 23 Microstructural Efficiency predicted by the Maxwell-Eucken model of
equation 4
Figure 24 Microstructural Efficiency predicted by the Bruggemann model of
equation 5
Figure 25 Microstructural Efficiency predicted by the Halpin-Tsai model of
equation 6
Figure 26 Cross sections of square packed square prisms. Volume fraction is
increasing from left to right

Figure 27 Microstructural efficiency of square prisms square packed
Figure 28 Cross sections of square packed diamond prisms
Figure 29 Microstructural efficiency of diamond prisms square packed112
Figure 30 Cross sections of square packed cylinders. Volume fraction is increasing
from left to right
Figure 31 Cross sections of hexagonally packed cylinders. Volume fraction is
increasing from left to right
Figure 32 Microstructural efficiency of square packed cylinders115
Figure 33 Microstructural efficiency of hexagonally packed cylinders116
Figure 34 Primitive cubic packing of cubes118
Figure 35 Microstructural efficiency of primitive cubic packed cubes119
Figure 36 Primitive cubic packing of spheres. Volume fraction is increasing from
left to right
Figure 37 Face centred cubic packing of spheres. Volume fraction is increasing
from left to right
Figure 38 Microstructural Efficiency of primitive cubic packed spheres. 121
Figure 39 Microstructural Efficiency of face centred cubic packed spheres122
Figure 40 Distribution of particle diameter for the two Gaussian distributions123
Figure 41 Microstructural Efficiency for randomly packed spheres with a Gaussian
Distribution with a standard deviation 0.2 times the mean radius. T124
Figure 42 Microstructural Efficiency for randomly packed spheres with a Gaussian
Distribution with a standard deviation 0.4 times the mean radius

Figure 43 Microstructural Efficiency for monodisperse randomly packed spheres
Figure 44 Changes in microstructural efficiency for a random monodisperse system
Figure 45 Back Scattered Electron Microscope image of the Brass-C System at 25%
volume fraction [112]
Figure 46 Scanning Electron Microscope image of the Cu-C system at 20% volume
fraction [112]
Figure 47 Optical microscope images of Cu-Fe Miscibility Gap Alloys with various
volume fractions of copper
Figure 48 Back Scattered Electron Microscope image of Mg-Fe [29] 136
Figure 49 Back Scattered Electron Microscope image of Si-SiC system at 50%
volume fraction [114]
Figure 50 Scanning Electron Microscope images of Sn-Al Miscibility Gap Alloys
with various volume fractions of copper
Figure 51 Back Scattered Electron Microscope image of Zn-C. The lighter phase is
zinc, the darker phase is graphite
Figure 52 Effective conductivity ranges for Brass-C, Cu-C and Zn-C Miscibility
Gap Alloys
Figure 53 Effective conductivity ranges for Copper-Iron, Magnesium-Iron, Silicon-
Silicon Carbide and Tin-Aluminium Miscibility Gap Alloys
Figure 54 Porosity modified energy density range for Brass-Graphite, Copper-
Graphite and Zinc-Graphite Miscibility Gap Alloys

Figure 55 Porosity modified energy density range for Copper-Iron, Magnesium-
Iron, Silicon-Silicon Carbide and Tin-Aluminium Miscibility Gap Alloys148
Figure 56 Effusivity plotted against energy density for a range of different thermal
storage materials. Shaded regions represent the range typical for the set of materials150
Figure 57 Effusive energy density for Brass-Graphite, Copper-Graphite and Zinc
Graphite Miscibility Gap Alloys151
Figure 58 Effusive energy density for Copper-Iron, Magnesium-Iron, Silicon-
Silicon Carbide and Tin-Aluminium Miscibility Gap Alloys152
Figure 59 Ranges for effusive energy density of some common thermal storage
materials153
Figure 60 Back Scattered Electron image of aluminium crystals156
Figure 61 Back Scattered Electron image of iron156
Figure 62 Coloured phase diagrams of Al-Cn, Cu-Fe and Fe-Mg157
Figure 63 Phase Diagram for Sn-Al [116]159
Figure 64 Dendritic aluminium crystals formed in tin pocket when quenched160
Figure 65 Composition contours for Sn-Al system on manufacturing163
Figure 66 Simulation of manufacturing for Sn-Al Miscibility Gap Alloys164
Figure 67 Composition and nucleus growth profiles for the Sn-Al system165
Figure 68 Unconstrained growth of the α nucleus for different powder sizes, cycle
temperature amplitudes and manufacturing temperatures
Figure 69 Cycles to failure for the Sn-Al system with different Sn Powder Radius
and thermal cycle amplitude
Figure 70 Phase Diagram for Cu-Fe [116]171

Figure 71 Composition plots of manufacturing Cu-Fe from equilibrium materials
Figure 72 Simulation of manufacturing for Cu-Fe Miscibility Gap Alloys 175
Figure 73 Composition and nucleus growth profiles for the Cu-Fe system 176
Figure 74 Evolution of Beta and Alpha nucleus radius in Cu-Fe system 177
Figure 75 Failure mechanism for Cu-Fe systems
Figure 76 Cycles to failure for the Cu-Fe system
Figure 77 Demonstration of how a Miscibility Gap Alloy might be protected from
chemical reaction aging
Figure 78 Relative estimated price range of constituent materials involved in some
Miscibility Gap Alloys
Figure 79 Nominal material cost plotted against effusive energy density for a range
of thermal storage materials
Figure 80 Plot of estimated (a) raw material and (b) manufactured material cost
bounds against energy density for a number of Miscibility Gap Alloy combinations 200
Figure 81 Total estimated cost of deployment plotted against stored energy for
seven different Miscibility Gap Alloys in three different deployments
Figure 82 Mean cost per unit energy of storage over the three different deployments
for the seven different Miscibility Gap Alloys
Figure 83 Comparison of the typical cost breakdown for a) Miscibility Gap Alloys
and b) Molten Salt thermal storage deployments
Figure 84 Exploded view of Air Heater design 208
Figure 85 Theoretical discharge characteristics for the Air Heater device

Figure 86 Schematic of how a thermal storage device might be implemented i	nto a
solar trough power plant	212
Figure 87 Barrel concept with rough dimensions.	213
Figure 88 Array of storage barrels connected in series and stacked	213
Figure 89 Charging curves for a single pipe barrel with differing material	215
Figure 90 Existing graphite storage/receivers developed by graphite energy	217
Figure 91 Close up photograph of solar receiver utilising graphite [140]	217
Figure 92 Concept sketch for a low grade steam generator	221
Figure 93 Aluminium Commodity price over the last 25 years [163]	271
Figure 94 Estimate at how brass cost might vary with zinc concentration.	The
shaded region indicates estimated cost range.	273
Figure 95 Copper Commodity price over the last 25 years [166]	274
Figure 96 Iron Ore Pellet Commodity price over the last 5 years	275
Figure 97 Magnesium Commodity price over the last 9 years [172]	276
Figure 98 Tin Commodity price over the last 25 years [176]	278
Figure 99 Zinc Commodity price over the last 25 years [176].	279

NOMENCLATURE

Latin alphabet

Symbol		As a super/subscript
А	Area	
С	Heat Capacity, Stiffness	
D	Diffusivity	
Е	Young's Modulus	
F	Helmholtz Free Energy	
G	Gibb's Free Energy	
Н	Enthalpy	
L	Length	Liquid
Ν	Number, Number of atoms	
Q	Heat Transfer	
R	Universal Gas Constant	
S	Entropy, Compliance	
Т	Temperature	
U	Internal Energy	
V	Volume	
с	Mass Specific Heat Capacity, Cost, Concentration	
d	Dimensionality	
e	Thermal Effusivity	Per Unit Energy
h	Mass Specific Enthalpy	
i		Index

Symbol

As a super/subscript

k	Thermal Conductivity	
m	Mass	
n	Number of moles	Index
р	Pressure	Constant Pressure (Isobaric)
q	Heat Flux	
r	Radius, Rate	
t	Time	Total
u	Mass Specific Internal Energy, Load factor	
v	Mass Specific Volume, Velocity	
Constant Volume (Isochoric)		
Х	Cartesian coordinate, Molar Composition	

Greek Alphabet

Symbol		As a super/subscript
Δ	Increment of	
∇	Grad of	
α	Thermal Diffusivity	A-rich alpha phase (matrix)
β		B-rich beta phase (distributed)
γ	Surface Energy	
3	Strain, Linear Thermal Expansion Coefficient	
η	Efficiency, Equilibrium Approach	
κ	Phase Gradient Energy	
λ	Latent Heat of Transition	
μ	Chemical Potential, Dynamic Viscosity	Microstructural
ν	Poisson's Ratio	
ρ	Density	
φ	Volume Fraction	
φ		Phase
Ψ	Mass Fraction	

Abbreviations

Symbol As a super/subscript Nu Nusselt Number Pr Prandtl Number Reynolds Number Re Atmospheric atm Body Centred Cubic Crystal Structure bcc Body Centred Tetragonal Crystal Structure bct Face Centred Cubic Crystal Structure fcc

Other Notations Let *a* be arbitrary

- *ā* Vector
- <u>a</u> Tensor
- *à* Temporal Rate of Change