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ABSTRACT

Instantaneous availability of power is taken for granted in much of the developed
world. Provided a fuel source is unlimited and readily available, the expectation of instant
power is readily fulfilled with available technology. However, it is now accepted that
human kind’s most utilised fuels (coal, oil and natural gas) are in fact diminishing and their
availability cannot be guaranteed as demand outstrips supply. Not only supply limitations
exist, the burning of these fuels contributes heavily to dangerous climate change. Thus
technology needs to be developed to efficiently utilise fuels intermittently or take advantage
of other energy sources which may also be intermittent.

Thermal energy storage devices store heat energy through sensible heating, a phase
change or a combination of the two. A device can be coupled to a power cycle to provide
thermal inertia to the system. Power cycles that generate electricity from an intermittent
heat source are an obvious application. Applications also exist in industrial processes
requiring continuous heat for drying or a chemical reaction and control of air temperature in
sensitive environments.

Many thermal energy storage devices exist, tailored to particular temperature ranges
and storage capacities. This thesis introduces the Miscibility Gap Alloy as a potential
thermal storage technology. Miscibility Gap Alloys overcome a number of the
shortcomings of molten salt, paraffin and sensible storage media but their properties are not
yet well communicated.

Material  properties, lifetime estimates, economic characteristics and

implementations of Miscibility Gap Alloys are discussed in this dissertation. Through



analysis of these aspects a number of novel methodologies, theories and devices were
developed.

The Lattice Monte Carlo method was successfully employed to model effective
conductivity of binary composites. The results of these analyses and existing
homogenisation models were generalised for volume fraction and constituent conductivity
ratio through a novel concept titled ‘microstructural efficiency’. This work enabled the
effective thermal conductivity (and indeed any 2" rank tensor property obeying Fick’s
Law) to be estimated with great accuracy for a number of idealised and common
morphologies with generality in volume fraction and conductivity ratio of constituents.

Best practice manufacturing methods for different Miscibility Gap Alloys were
identified through experiment and presented. This led to knowledge of the morphology of
the materials (including potential porosity). From this, good estimates were made of all
material properties relevant to the alloys use as thermal storage. The hypothesised material
property advantages of Miscibility Gap Alloys are thus confirmed and compared with the
existing state of the art.

A discussion of the long term behaviour of Miscibility Gap Alloys follows.
Consideration is given to diffusion as well as mechanical and chemical dominated aging
mechanisms. It was found that diffusion dominated aging is most likely for systems with
non-negligible solubility of the components and where discrete large powders undergo
large temperature changes through cycling. Mechanical effects should not contribute
beyond the first few cycles as the matrix deforms to accommodate any mismatch in thermal
expansion. Chemical aging is likely for systems exposed to air or water but may be

mitigated through isolation of the material.



Establishment of material and long term properties of the alloys enables a
discussion of the comparative economics of using Miscibility Gap Alloys as thermal
storage. The alloys are shown to be extremely competitive compared to existing thermal
energy storage solutions. They have a higher capital cost generally, due to the high cost of
metals. However, the infrastructure and maintenance costs required are a fraction of that for
most other thermal storage media.

Finally a number of potential implementations are introduced ranging from thermal
inertia for power production to heating for the drying of foods. Detailed calculations and
engineering drawings are provided for an air heater device intended for room heating.
Specific methods of storage for concentrated solar thermal plants are described before more
exotic implementations are presented.

The thesis concludes with a summary of work and a critical evaluation of the
potential of Miscibility Gap Alloys as thermal storage media. Potential work for future

research is provided with guidance as to how it might be initiated.
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NOMENCLATURE

Latin alphabet

Symbol As a super/subscript
A Area

C Heat Capacity, Stiffness

D Diffusivity

E Young’s Modulus

F Helmholtz Free Energy

G Gibb’s Free Energy

H Enthalpy

L Length Liquid
N Number, Number of atoms

Q Heat Transfer

R Universal Gas Constant

S Entropy, Compliance

T Temperature

U Internal Energy

\Y Volume

c Mass Specific Heat Capacity, Cost, Concentration

d Dimensionality

e Thermal Effusivity Per Unit Energy
h Mass Specific Enthalpy

[ Index
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Symbol As a super/subscript

k Thermal Conductivity

m Mass

n Number of moles Index

p Pressure Constant Pressure (Isobaric)
q Heat Flux

r Radius, Rate

t Time Total

u Mass Specific Internal Energy, Load factor

Y Mass Specific Volume, Velocity

Constant VVolume (Isochoric)

X Cartesian coordinate, Molar Composition

XXV



Greek Alphabet

Symbol As a super/subscript

A Increment of ...

\Y Grad of ...

a Thermal Diffusivity A-rich alpha phase (matrix)
B B-rich beta phase (distributed)
Y Surface Energy

€ Strain, Linear Thermal Expansion Coefficient

n Efficiency, Equilibrium Approach

K Phase Gradient Energy

A Latent Heat of Transition

u Chemical Potential, Dynamic Viscosity Microstructural

v Poisson’s Ratio

p Density

[0) Volume Fraction

¢ Phase

] Mass Fraction

XXV



Abbreviations

Symbol
Nu Nusselt Number
Pr Prandtl Number

Re Reynolds Number

atm

bcc Body Centred Cubic Crystal Structure

bct Body Centred Tetragonal Crystal Structure

fcc Face Centred Cubic Crystal Structure

Other Notations Let a be arbitrary

a Vector
a Tensor
a Temporal Rate of Change
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As a super/subscript

Atmospheric



